
Naval Ocean Research and Development Activity
February 1988 Repxrt 203

AD-A197 768 Ui L ~~

Implementation Issues for Level 0
Image Processor Software within
an Application Package

OTIC

James E. Lennox
Mapping, Charting, and Geodesy Division
Ocean Science Directorate

Anproved for public release: distribution is unlimited. Naval Ocean Ree an De.velopment Activity, NSTL, Mississippi 39529-5004.

1 A A A
.............................- K-. $3CVV

Foreword
I

The Mapping, Charting, and Geodesy Division has been tasked by the
Defense Mapping Agency to develop methods for extracting bathymetry
information from multimode sensor data. This task requires the use of
sophis,'cated image processors and software packages. This paper describes
the work done to accomplish interfaces to two different image processors and
a methodology for the general case of implementing image processors to a
high-level software package.

W. B. Moseley A. C. Esau, Captain, USN
Technical Director Commanding Officer

Lu:!i

0 ,

• o

.S2.

-.*

°N

C

Executive Summary

O

Image processing is rapidly emerging as a field with many interesting areas
for the computer scientist. Packages are available that allow images to be
manipulated in an interactive environment by applying functions to the image.

N Functions are defined as transformations from the image memory domain
to the display domain, which may permanently alter image memory values.
This paper describes minimum hardware constraints and the scope of modifica-
tions necessary to implement different image processors within the Earth
Resources Laboratory Applications Software (ELAS) environment. It also
contrasts the impact on software engineering principles related to the implemen-
tation of low-level software to support the imaging functions.

,.... ...
, h-

'p.

.t

S, " • % %," f . %'- ... -% -" .. -. . " r,'".-.%"-. ~ , *!. ,, "-...r awWww '. "" " % ''," '% *' " %~ 5" ' 5 " ". ,,,,-. '",,, ,. ~ N

Acknowledgments

This study would not have been possible without the guidance, encourage-
ment, and suggestions provided by the government employees in the Pattern
Analysis Branch of the Mapping, Charting and Geodesy Division. The author
is especially indebted to Dr. Charles Walker of NORDA for his vision, patience
and scientific leadership, and NASA's Earth Resources Lab for developing
the ELAS image processing software.

This study was sponsored by the Oceanographer of the Navy (OP-096). The
work was funded by Program Element 63704N, coordinated by Ms. Mary
Cla wson.

• '

Contents

Background 1

Theory of Operation 1

Software Scope 1

* Hardware Scope 2

Software Engineering Issues 2

Conclusions 3

Appendix A: Wiring Modifications to the
Grinnell GMR 275 Image Processor 5

Appendix B: ELAS Routines Affected 11

1% %

.7

V.;'

illi I " "iii

6... .,.,.......,--".-.- -,-, , . , - , -,- : - . .,.-,-.-,. , . , , .-. . -..,. -.-, . . , . ,

S.

Implementation Issues for Level 0 Image
Processor Software within an Application Package

!

Background necessary in subroutines RT, CURDIF, DISINT,

ELAS is an image manipulation package originally FUNMEM, and FUNM2, GWRIT2.

developed by the Earth Resources Laboratory (ERL). Modules ELAS, FMGR, and RT were originally

The package is comprised of over 600 modules. Mod- written for a 512 x 256 pixel image processor with
ules are written in FORTRAN 4 and the host assembler fewer image and graphics planes. Changes in these
language. The Pattern Analysis Laboratory (PAL) of modules involved defining the number and size of
the Naval Ocean Research and Development Activity image planes and the number of peripherals. The driver
(NORDA) needed to secure ELAS to support research name and setup codes also had to be changed to reflect
in the determination of bathymetry from Landsat and the particular image processor in use.
Thematic Mapper data. The host machine was a VAX Modules COMD and LABL were modified to allow

• ,11/780 with a Gould IP 8500 image processor. Subse- zoom and scroll capability and to allow hardware to
* quently another version of ELAS was developed on clear image and graphics planes, which increased the

a VAX 11/750 with a Grinnell 275 image processor. speed of these operations considerably. The build table
This report discusses the implementation of both section was updated to allow color table values from
systems through the development cycle and related soft- 0 to 255 instead of the 0 to 15 range previously
ware engineering issues. It is a comparison of hard- implemented. The print color table section was
ware and low-level interfaces between the two enhanced to print values from 0 to 255 rather than 0 to
machines, and a description of that impact on the soft- 15. Finally, these modules were changed to use a

- ware engineering-related issues. trackball interface for determining cursor position
rather than ASCII characters from the VTI00

,. keyboard.

Theory of Operation Subroutines CURDIF, DISINT, FUNMEM, and

EI AS is comprised of two types of routines: modules [UNM2 were also changed to use the trackball inter-

and callable subroutines. Modules are scheduled by the face instead of ASCII sequences from the terminal.

cuirently running process and the state is saved in a Subroutine GWRIT2 was modified to pass 4-byte

system of subfiles. Scheduling results from typing in parameters to ILBIT to allow correct subroutine

the name of a major module as the next command to linkage. Previously implemented versions of GWRIT2
princess, were developed on older PDP- I I machines which used

Within the context of L'O in the ELAS image- a 16-bit word rather than the standard 32-bit word used
-manipulation system, COMD is the common image on the VAX architecture. Problems in this area
ndispla i module and LABL is the textual graphics and manifest themselves in a unique way because the VAX
aarchitecture stores its most significant bits in the lowest

,ector drawing module. Each of these modules inter-
face \.ith a low-level, callable subroutine, CIO, that address. Thus a valid integer passed to an ILBIT
provides ato became a zero or a large negative number in that

routine's formal parameter list. The value erroneously
prc" fpassed depends on the value of the integer in the call-

ing routine. This change _u rected a problem encoun-
tered with writing graphics in the vertical direction.

Software Scope An additional software change was a modification
The bulk of the programming effort provided to GRDRV, the DRI1-B driver. 'lie driver was

- subroutines ('10, ZOOM, RDSJAT, and TRKINT, modified to provide compatibility with the VMS 4.2
which were not present and which were written in opetating svstem. SDYNDEF was added to the driver

" [ORTRAN 77. This necessitated changes to modules to map in the dynamic definitions that were resident
"I.AS. (OMD, I.ABi., and I.M(iR. (hanges were also in a different library in the VMS 3.6 soft),\are.

% %

Hardware Scope Software Engineering Issues
The existing hardware configuration did not have A variety of lessons can be learned from the imple-

sufficient lookup tables to simultaneously map an mentation of ELAS in an environment with a specific
intensity scale fun,.tion and a color lookup function. image processor. The hardware and software support
This is because the only lookup cables available were offered by a vendor may dictate design issues so that
on the image function memory board and only one a clean implementation cannot be achieved. This can
function could be loaded at a time. Another set of tunc- be experienced with other image-processing packages
tions was available on the image processor card, but as well.
the output of these tables is routed back to the image Vendor software is a major issue in the decision to

. planes, permanently altering their values. This was con- buy a particular piece of hardware. However, it may
sidered an unacceptable approach during true color be preferable to implement your own software solu-
operation because three image planes are used to hold tions because of the level of complexity that may be
the RGB spectrum and three scratch planes would also added to the software package. Complexity is deter-
be needed. The Grinnell has only five image planes. mined by communication structures used by designers

The cleanest solution and the one implemented was of the user package and the image-processing vendor's
J to change the image video driver board to a function library.

video driver board. The boards operate identically but In modern software packages, communication
the function video driver board provides another set between different independent routines is achieved by
of lookup tables to the system. There was a problem message passing schemes. These are usually global or
associated with the implementation: slot #33 did not common variables, depending on the language choice,
have read-back lines or control signals for the lookup and are true of both interactive and library callable
tables. This problem was solved by modifying the back subroutines. To use the vendor-supplied routines, the
plane to accommodate those signals to the slot. The message system must be established by the application
system now provides two sets of lookup tables to the software package, which creates a structure on top of

* system in a sequential path from image memory to the the user package, which obviously fails to localize the
k ideo drivers. Appendix A documents the changes nec- functions of the image processor with relationship to
essary to reconfigure the Grinnell image processor for the other software in the user package. This method

% the function video driver board. is wrong from a software engineering viewpoint for
The trackball interface provided an additional set two reasons: complexity and control of data flow.

of problems. There is a hardware-design-related prob- Complexity is increased by many factors that pre-
lem with polling the trackball interrupt registers. The sent at least two alternatives. First, the software main-
enter push-button switch must be depressed before any tainer must know in an intimate way two different user
other s,,itches can bo sensed in the interface register. packages. Thus, the programmer must know the image-
'.-.(Tvc resistor packs w ere used in the trackball, -1 and processing system even if the primary interest is in the
3 t.pes. They both have 16 pins but the -3 has development of statistical manipulation capabilities for

8 resistors in the bridge instead of 15. This causes a the system. The other alternative is to have two dif-
timing problem when reading the trackball interrupt ferent people responsible for maintenance of the
register, specifically the enter button. Consequently the system, neither of whom is fully skilled to handle prob-
intertace loses synchronization with the system- lems in other parts of the software. The second alter-
pros ided QIO and a successful read does not take native impedes the speed of problem determination and
r tc, he probiem is then complicated by the fact that may have great impact in a production eavironment.
,l() thinks it got a successful read, as signified by the Also, there could be more overhead in communication
10-status block word one, and the number of bytes between programmers assigned to modify or maintain
read is signitied by word two. This means that the the software, including a lengthened learning curve.
system service routine $SYNCH cannot be used to indi- Good software practice demands that a module
cat, either condition. The problem did not respond to receive information on a need-to-know basis. At the
the use of event flags since the QIO routine believes very least, write-access to a variable should be limited

. it i, getting a valid read. Slowing the loop down by and regulated by a good design methodology. Adding
initiating a SWAITFR (or a do-nothing loop) eliminates a layer of variables for message-passing schemes places
the problem and does not seem to affect the use of the the entire structure in a wide-open environment. The
trackball \ith FI.S One is primarily interested in the latter may cause a variety of problems, including distor-
state at that time and not in obtaining an interrupt. tion of the message if the variable's state is compro-

• Slowing downri the loop also precluded multiple reads mised. and in a large system it could be extremely
in a loop as an approach wkith a limit on the number difficult to locate.
ot reads. The delay does not adversely impact perform- Further, placing a layer on top of the applications

cane. ! he resolution ot this problem wkas scry time and package completely destroys portability, since all
labor inlensic. modules w,,ould have to be changed to accommodate

2

.o,,, 6k-,'L%

a new vendor's message-passing protocol. It must also Conclusions
be pointed out that vendor software is generally pro- A wide variety of image processors are on the market
prietary and may be sold separately and not included ranging in price from a few thousand to several hun-
with the hardware. Portability of the package to dred thousand dollars. The higher-priced systems

* another lab may be impossible or more expensive; provide hardware-implemented solutions to software-
therefore, display routines should be isolated and the related problems such as histogram equali7ation or
vendor's library should be used only when the goal of warping and stretching. In order for the image-
portability is not compromised. manipulation packages to remain independent they

The image-processing system can be likened to a must continue to provide these functions in software.
layer of abstractions from the software interface view- This lessens the risk of becoming a hardware-dependent

* point. The Gould IP8500 image processor provides a package. While not machine specific, ELAS is architec-
level 0 function IP8Q, which is a pseudo-driver on top ture specific, treating the image processor as just a
of the VAX-supplied QIO routine. The parameters frame buffer. This attitude should be relaxed to begin
passed to IP8Q include mnemonics that tell IP8Q what taking advantage of the tremendous advances in to-
function to perform on behalf of the user's applica- day's machines. However, most applications in the
tion. It may take several calls to affect a principal func- image-processing domain do not require instantaneous

* tion of the image processor. The system also provides results so the lack of hardware functions does not
parameters for selecting the register and the board to significantly degrade the capacity to use the package.

modify where a polyboard or polyregister environment It is recommended that these advanced features be

exists. Thus, modification to a particular register on viewed as trade-offs in terms of throughput. Cheaper
a particular board causes a unique function of the hardware costs allow more workstations, which may

, imaging system to occur (i.e., reading an image into provide more throughput than a single machine run-
image memory). The IP8Q is performing the task of ning at the state of the art. However a minimum con-

packaging bit patterns that the machine can under- figuration should include the following:

stand and handing them to QIO. In this manner the 1. A single video output controller for each
mnemonics generate streams of bit patterns which, workstation.
packaged with other parameters, instruct the machine 2. Four 512 x 512 by eight-bits-deep image planes

* to perform a particular function. Grouping these calls for each work station (three planes configured for RGB
together formulates level I cals, which are a level of and one plane for graphics).
abstraction higher than level 0 calls. 3. Two sets of lookup tables, one for functions and

The Grinnell GMR275 does not provide an abstrac- one for color mapping, available to each workstation.
tion at this level. Therefore, it was necessary to form The tables should each be 256 x 8 bits deep. The color
an array of bit patterns and pass the array to QIO. lookup table should contain three 256 x 8-bits-deep

* Mnemonics for each primitive instruction on the boards tables.
are associated with a hexidecimal code representing that 4. One trackball interface with multiple interrupt
instruction's opcode. Specific instructions are formed buttons.
by logically "and-ing" or logically "or-ing" a 5. A monitor capable of displaying 512 x 512 by

parameter with an instruction mask. In this vein, eight bits deep at one time. However most packages
streams of instructions are generated to effect a ma- are moving toward a 1024 x 1024 by twelve-bits-deep
jor component of the imaging engine. Thus, func- display.
tionality of instruaction packets were made isomorphic Beyond these considerations, speed versus price
to the functions of the Gould IP8500 though individual becomes an issue. The time reauired to classify an
instructions were not isomorphic. image with the iterative maximum likelihood estimators

To modularize the functionality of the common 1/O grows nonlinearly. Thus an increase in the display size
, interface (CIO) for the Grinnell, a strategy of localiza- will cause computational time to grow by more than

t tion was adopted. Initialization during each major a factor of two.
function was performed within that stream of instruc- It may become economical to include such features
tions, which made each function of CIO completely as an array processor board or a histogram equaliza-
contained within that portion of the code rather than tion board. Image windowing can also come in handy
relying on initialization coming into the routine at the when large files are to be zoomed and scrolled.
top. This allowed an extremely crisp case structure to The standard configuration of a vendor's image
he implemented with a computed GOTO, and, together processor should be carefully scrutinized. They do not
with the use of mnemonics, made the development all provide standard hardware features. The Grinnell

quick and casy since all logic problems were isolated (IMR 275 image processor is a prime example. It pro-
within a small section of code within the routine. vided only one set of lookup tables, which made a

3

"M0"M,

backplane modification and a board purchase neces- once defined properly, they became a nonissue in the
sary. The type of output also should be checked. development cycle. Quintessentially, the most sig-
Vendors usually supply RS-170A, 30-Hz interleaved, nificant contributing factor was the complete isolation
or 60 Hz noninterleaved. Some vendors supply a of functions within the routine. There were a number
combination of RS-170 and one of the other two. of reasons. First, the area of interest was localized to

Turning to software engineering issues, portability a block of code rather than splitting it by initializing
cannot be maintained if the vendor's package is placed at the top section. This concentrates functionality
on top of the existiiig applications package. This would within the block of code making comprehension much
limit the user to systems with similar hardware. It was easier. Second, because all initialization is performed
also pointed out earlier in this paper that placing the within the block, the effects of extraneous values left
vendor's package on top of the existing imaging in a register are minimized. This provides a complete
package unnecessarily adds to complexity; therefore, implementation of the functional subcomponents in
it should be avoided. Avoidance will require develop- each block of code. Understandability was partitioned
ing level 0 software by zhe support group for the user

application package. Price being equal, the software or chunked by the isolation, which implies that only
with the highest level of abstraction in its level 0 calls that subcomponent of interest need be grasped rather

should be chosen, since it will minimize the develop- than an entire routine. The image processors in general

ment cycle, are faster than the VAX 11/780. Thus duplication of

Regarding the development of the common I/O the initialization, which amounted to a few additional
interface, the assignment of opcodes to mnemonic lines of code, is negligible because initialization at the
names increased readability, because they are more top requires FORTRAN conditional logic, which is
descriptive than hexidecimal codes. Additionally, there slower than executing three or four additional inline
was less error due to misdefining the opcodes since, instructions in the image processor.

6 4

• -% %

." q%

Appendix A: Wiring Modifications to
the Grinnell GMR 275 Image Processor

The backplane wiring list can be read as follows. For example: 331PS34
Each connector has two rows which we will call bot-
tom and top. The bottom row is designated PS while 33 -- The thirty-third slot on the backplane;
the top row is designated CR.

Each row has two connectors which we will call left 1 -- The left side connector;
* and right. The left connector is designated by the PS- The bottom row side;

numeral 1 while the right connector is designated by
the numeral 2. 34-* The thirty-fourth pin.

On each connector the pins are labeled from I to
50 starting on the bottom row. The modifications are marked on the five pages

The first two numbers represent the slot number for which follow. The numbers 9XDB14 through 9XDBOO
the board. are the designations for the lookup table address lines.

5

I%

.i..--

GRNNELL ~ ~ 0A SYTM :CG IT119Q S~ries 0 &m 4 Manual
64-xc Backplane WJireii.sc

BACPLNEtVRELIST N4O. 135_______ Pae * of (o,

I) , 101 _1 1 1 1Z I 412- 1 i1 i

rA IIIII I I

!IiH 1Ih 1 1 1 1 .117 1 1
2171 .4TJ.1 21071 111 1Ie1111

1 2j l ~I I II I II I
' 111 1 1 1 1:51 I I, 1 .21 1 1

1 1,1 1 1L P~ I I 0-IhEI127- NIVI

O~~ ~ ZCP~ L,~~C1AJ
________ 777-1

2 C'±' 3' nI51 FR40

Z! Ij4 IP'
* Ji~.!12

G;: NNE SYS EMS p AGE 9 G-,LU C Series 0 &.1 M Manual

c~INNE1 0Y.E .4-X BackpJlane Wirelist

B~c~~L.- nI.Rr:ST .1O. i - Page Lofjg,;

~I I If
ItI a Ip .310

2-9 1 0 1Z! 0 I I I ?t)1 : I 1Z1 1 1 1

I ~ ~ X I'J '0

- V'3 1 C PF1

g~3 1~ \4I \- \ I I

~P- 2)r Z)

4L I

-SgE • GMR Series 0 & M Manual

LGRNNELL SYSTEMS :.4-x Backplane Wirelist

BACPLANE WRLLIST NO. 1029 1 - Page 36 of

-7 -P 5-(-

oi71- i -L! 7 Go!3 ! i I T I 1i_1l lll1i-ill

,,:,3 , I0 \} I 1 118 1!5111$ t t 11 1 I4 l
"il ,~~ ,iK?!FT!=1:

1 ' 1 iI 17 1 17 11 11 !1 117'::z~ i1 0I_!R ;17 ! i 1171 L 711 11 11 11qcf
"3 .i5 CI .I ! t7 1 r il 11 1 1 1l q .l i!11 117

II 1 lll2J il 1

"';. ' 'ZS~~~~3! C'111!i i!!P51 _

2 ILL 2-LICI a ZL5
2! 7 1. 1? 151 -3 162 217Q 0-I-1 3(o

__-__ __.__ _. I I I

I f i i I" I J I I
,I 1C I C I , (

9 ,

I

r.'.'. - . . .' . .- .. - -. -% ". .- .-.- .- .-.- .- .", . a . . . ll. a" " ."4"w *. ." a. . ..9

GRINNLL..SYST M~ ~ MIR1 Series 0 & M ManualGRNN L SY T M I. 4 -x Backplane Wirelisr

BACKTLANE WIPLELIST 140 10 ~page 3fI. 0f fL

- ~ ~ ~ ~ ~ 1 -r -P I ------

IQ

12-J -a£

1C1 M N17 1 1 1 1 I c -I-I
li 11-

H/ 118 i e I

"1 2 1L-LL

_ _171_ IC I 0 1 1 1li

C2~ 3 -

*" . -A 1 -

X.AGE I TO" M Series 0 & M ManualGRINNELL SYSTEMS 6.4-x Backplane Wirelist

4 ACKP"ANE WIRELIST NO. 10 29 18- E Page _I of
[Ql~D!-B IqIXi-D q

I* I i I I I I -I

-jj.
I I

I -1-1C R 2-0 . 2- 0-s 0IPZ121-p

le I

.n 0 1

5"

: N/41 I 1171 1 -7I
*-- II i i if !-2 1 5 122 1 aI 1

12 -,
I I ,. I I I i0 9

I1

%

Le.
. * , * * *

i ~ Appendix B: ELAS Routines Affected /

P,,1

.4°
.

0

I

.4".4"

,..

1

I

I
.

'.4

4%

,.4 - 13
I

V

©C§IMHO150008000©IMVOO5501OOOO©ISTFOICIS204CICOOO©ITOIOOO@IOP
C
C CIO.FOR FOR THE GRINNELL IMAGE DISPLAY

4C
C CALL CIO (LU, lOP, NC, LINE, NBTS, BUFF, L)
C
C LU = LOGICAL UNIT (NOT USED)
C
C lOP = COMTAL OPERATION CODE

- C = I FOR IMAGE READ

C = 2 FOR IMAGE WRITE

C = 3 FOR GRAPHIC READ
C = 4 FOR GRAPHIC WRITE

C = 5 FOR FUNCTION READ
C = 6 FOR FUNCTION WRITE

* C = 7 FOR COLOR TABLE READ
C = 8 FOR COLOR TABLE WRITE
C = 9 FOR TARGET READ (DISABLED)

r C = 10 FOR TARGET WRITE

C
C NC = COMPONENT NUMBER

a C = IMAGE / GRAPHIC NUMBER I lOP IS 1,2,3 OR 4
C ALSO IF NC IS NEGATIVE, THE SCROLL REGISTER WILL BE

C UPDATED AFTER THE OPERATION TO ALLOW THE IMAGE TO BE
C ROLLED.
C = UNUSED FOR TOP GREATER THAN 4

C
C LINE = LINE NUMBER FOR IMAGE OR GRAHIC READ OR WRITE.

C THIS NUMBER IS USED AS ELAS EXPECTS. I.E. THE
C TOP LINE IS LINE 0.
C
C NBTS = NUMBER OF BYTES (NOT USED)
C

, C BUFF = DATA ARRAY
C
C L = STATUS ; NORMALLY EQUAL TO NBTS ; NEGATIVE ON ERROR

4."

C
SUBROUTINE CIO (LU, lOP, NC, LINE, NBTS, BUFF, L)
IMPLICIT INTEGER*4 (A - Z)

a INTEGER*2 LN, ELM
INTEGER*2 GR, IMG, MASK, COL, BUFF(512), B(600), IOSB(4),

* WID, LSM, WGD, WAC, LWM, LUM,
* ERS, ERL, SLU, EGW, LER, LEA,

* LDC, NOP, LPR, LPRI, LPR2, LPR3,
* LPR4, LPR5, SPD, LPA, LPD, RPD,

* * BIT15

C
C THE FOLLOWING PARAMETERS DEFINE THE GRINNEL OPCODES SYMBOLICLY.
C

PARAMETER
*(WID'OOO0'X, LSM='1000'X, WGD='2000'X,

* * WAC='2400'X, LWM='2800'X, LUM='2COO'X,

* ERS='3000'X, ERL='3400'X, SLU='3800'X,

°1

6~ %s

* EGW-'3COO'X, LER"'4000'X, LEA-'4800'X,
* IEB-'5000'X, LEC-'5800'X, 1.LR-'6000'X,
* LLA-'6800'X, LLB-'7000'X, LLC-'7800'X,
* LDC-'8000'X, NOP-'9000'X, LPR-'COOO'X,
" LPRI,'C200'X, LPR2-'C400'X, LPR3-'C6OO'X,

* LPR4-'C800'X, SPD-'AOOO'X, LPA-'BOOO'X,

* LPD-'DOOO'X, RPD-'EOOO'X,

, c BIT MASKSC

* BIT15='8000'X)

C
C CB IS AN ARRAY USED FOR CFSUB CALLS

5, C
INTEGER*4 CB(4)

C
C FIRST IS USED TO TELL CIO WHEN IT IS FIRST CALLED.
C

DATA FIRST /0/

DATA CB / 4HIFCT,O,0,O/
DATA ICH/1/
EXTERNAL 10$READLBLK
EXTERNAL 10$-WRITELBLK

SC-

C IF THIS IS THE FIRST TIME INTO CIO, OPEN THE GRINNEL

c
IF (FIRST.EQ.O) THEN

L = SYS$ASSIGN ('GRAO:',GR_LIJ,,)
IF (L.NE.I) THEN
WRITE (6,1) L

.1 FORMAT(' UNABLE TO ASSIGN THE GRINNELL; STATUS ',Z8)
ELSE

FIRST = 1
. •END IF

END IF
C
C
C

" ,' ;Go TO (100, 200, 300, 400, 500, 600, 700, 800, 900,
* 1000, 1100, 1200, 1300), lOP

C
.•, C

.'. C READ IMAGE
"-.. C

100 CONTINUE
LN = 511 - LINE REVERSE ORDER To MATCH ELAS
IMG = ABS (NC)
1 MG = 2 ** (IMG - 1)

-,,. B(1) = TOR (LWM, '0020'X)
B(2) = TOR (LUM, '0002'X)
B(3) - IOR (IA, LN)
B(4) - TOR (LEA, 'OO0O'X)
B(5) = IOR (LEB, '0001'X)
B(6) - TOE (LIC, IMG)-a..

-p 16
0

"'k
-U..dd -,'.,'-/.._,

'
,_-.- .- , .. .-. ,, .,% ..-.- .. " .' ;.,'.,.," . '- ,.€.*' ., .. , ," e ,.d. . d.,%,' .:

B(7) - IOR (LSM, 'OOFF'X)

B(8) = TOR (SPD, 'O1OO'X)
B(9) = TOR (RPD, 'O000'X)

STAT = SYS$QTOW (, %VAL(GR LU), IO$_WRITLBLK
•IOSB,,,B, %VAL(18

STAT = SYS$QIOW (, %VAL(GR LU),IO$_READLBLK,

• IOSB,,,B, %VAL (1024),,,,)
CALL CIOPCK (B, BUFF, 512)
L = 512

RETURN
C
C WRITE IMAGE
C

20(0 CONTINUE

LN = 511 - LINE ! REVERSE ORDER TO MATCH ELAS

IMG = ABS (NC)

1MG = 2 ** (IMG - 1)
B(M) = TOR (LWM, 'O000'X)

B(2) = TOR (LUM, '0002'X)
B(3) = IOR (LLA, LN)

. B(4) = IOR (LEA, '0000'X)
B(5) = IOR (LEB, 'O001'X)
B(6) = LOR (LDC, 1MG)
B(7) = TOR (LSM, 'OOFF'X)
B(8) = IOR (SPD, '0200'X)
B(9) = IOR (LPR, '0200'X)
DO I = 1, 512

' B(I+9) = BUFF(I)
END DO

NTW = 512 + 18
STAT = SYS$QIOW (, %VAL(GRLU), IO$_WRTTELBLK

• TOSB,,,B,%VAL(NTW),,,,)
L = 512

RETURN
C

- C READ GRAPHICS

300 CONTI NilE
GR = ABS (NC) / 2

GR = 2**(GR + 8)

~L N = 511 - LINE ! REVERSE ORDER TO MATCH ELAS

B(l) = TOR (SPD, 'OOI'X)
B(2) = IOR (LPRI, 'OOCO'X)
B(3) = OR (IPR2, 'OOAO'X

B(4) = OR (LPR3, 'O010'X)
B(5) = TOR (LDC, GR)
B 8(6) = IOR (LSM, 'OFOO'X)
8(7) = OR (LEA, '00)1 'X)
B(8) = IOR (LLA, LN)
B(9) = IOR (LEB, '0001'X
B(OO) = OR (LLB, 'OOO0'X)
B(O) T TOR (LUM, '0002'X)

S8(12) = OR (LWM, '(840'X)
B(13) = TOR (SPD, '01OO'X)

17

• - -. ".., . "'',:. ". . "-". . 4'..,..-.K 'W- ..- % &% '', ',J ' % . , '.,'Jw'' ""' '''- ,l ,,4-' ",'-' -- ,', ''"

B(14) = TOR (RPD, 'OCOO'X)
STAT = SYS$QIOW (, %VAL(GRLU), IO$_WRITELBLK

* IOSB,,,B, %VAL(28),,,)
STAT = SYS$QIOW (, %VAL(GR LU),IO$ READLBLK,

* IOSB,,,B, %VAL (512),,,,)
CALL CIOGPK (B, BUFF, 512)
CALL SWL (BUFF, 64)
L = 64

RETURN~c

C WRITE GRAPHICS
C

400 CONTINUE
CALL SWL (BUFF, 64)
GR = ABS (NC) / 2
GR = 2**(GR + 8)
LN = 511 - LINE ! REVERSE ORDER TO MATCH ELAS
B(1) = IOR (SPD, '0001'X
B(2) = IOR (LPRI,'OOCF'X)
B(3) = IOR (LPR2,'OOAF'X)
B(4) = IOR (LPR3,'OO1F'X)
B(5) = IOR (LDC, GR)
B(6) = IOR (LSM, 'OFOO'X)

* B(7) = IOR (LEA, 'OOO0'X)
B(8) = IOR (LLA, LN)

. B(9) = IOR (LEB, '0008'X)
B(OO) = IOR (LLB, 'O000'X)
B(1) = IOR (LUM, '0002'X)
B(12) = IOR (LWM, '0840'X)
B(13) = IOR (SPD, '0200'X)
B(14) = IOR (LPR, '0820'X)
DO I = 1, 32

B(1+14) BUFF(I)
END DO
NTW = 64 + 14
NTW = NTW * 2
STAT = SYS$QIOW (, %VAL(GR LU), 10$_WRITELBLK

* IOSB,,,B, %VAL (NTW),,,,)
CALL SWL(BUFF,64)
L = 64

RETURN
* C

C READ FUNCTION
C SINCE THE GRINNELL HAS 3 LOOKUP TABLES WHICH HAVE BEEN
C IMPLEMENTED TO SERVE AS BOTH FUNCTION & COLOR TABLE,

- C THE READ FUNCTION IS CODED TO READ FROM A SUBFILE.
C

* 500 CONTINUE
4- CB(3) = I

CB(4) = 128
CALL CFSUB (5, CB, BUFF)
L = 512

RETURN
* C

18

C WRITE FUNCTION
C

600 CONTINUE

CB(3) - I
CB(4) - 128

CALL CFSUB (6, CB, BUFF)
B(1) - IOR (SPD, '0002'X)
B(2) = IOR (LPA, 'OCOO'X)
DO I = 1, 256

B(I+2) = IOR (LPD, BUFF(I))
l* END DO

NTW = 512 + 4
STAT = SYS$QIOW (, %VAL(GR LU),I0$_WRITELBLK

* IOSB,,,B, %VAL(NTW).,,,)
L = 512

RETURN
C
C READ COLOR TABLE
C THIS OPTION READS FROM A SUBFILE RATHER THAN THE GRINNELL.

C
700 CONTINUE

CB(3) = 129
CB(4) = 256
CALL CFSUB (5, CB, BUFF)
L = 512

RETURN
C
C WRITE COLOR TABLE.-

800 CONTINUE
CB(3) = 129

CB(4) = 256
CALL CFSUB (6, CB, BUFF)
B() = IOR (SPD, '0001'X)

* DO ICOL 1, 3
MASK = (ICOL - 2) * '800'X

IF (MASK.LT.0) MASK = '400'X
B(2) = IOR (LPA, MASK)
MASK = 15 * 16**(ICOL- 1)
DIV = 16**(ICOL - I)
DO LOC 1, 256
COL = 1AND (BUFF C LOC), MASK)
COL = COL / DIV * 17
B (LOC + 2) = IOR (LPD, COL)

END DO
NTW = 512 + 4

STAT = SYS$QIOW (, %VAL(GR LU),IO$_WRITELBLK,i4q * IOSB,,,B, %VAL(NTW).,,,)

END DO
L = 512

RETURN

C
* C READ TARGET ONLY ONE CURSOR OF FOUR ACTIVATED

C

19
4

900 CONTINUE
B(1) = IOR (SPD, '0080'X)
B(2) = IOR (LPR, 'O011'X)
B(3) = TOR (LPA, '0000'X)
B(4) = TOR (RPD, 'O000'X)
STAT = SYS$QIOW (, %VAL(GRLU),IO$_WRITELBLK,

! * IOSB,,,B, %VAL(8),,,,)
C

C
STAT = SYS$QIOW (, %VAL(GRLU),IO$ READLBLK,
BU•IOSB,,,B, %VA(4)A,,12
BUFF(O) = B(1) .AND. 1023

', BUFF(2) = 512 - (B(2) -AND. 1023)

RETURN

C
C WRITE TARGET

1000 CONTINUE
LN = 512 - BUFF (2)
ELM = BUFF(1)
ELM = IOR (ELM, '0800'X)
LN = IOR (LN, '0800'X)
PRINT *,' X AND Y ',ELM,' ',LN

* B(t) = IOR (SPD, '0080'X)
B(2) = IOR (LPR, 'O011'X)
B(3) = IOR (LPA, '0000'X)
B(4) = IOR (LPD, ELM)
B(5) = TOR (LPD, LN)
STAT = SYS$QIOW (, %VAL(GRLU),IO$_WRITELBLK,

* IOSB,,,B, %VAL(10),,,,)
RETURN

C
C ERASE IMAGE NO LONGER USED SUBROUTINE CLRGI USED
C LEFT IN CASE SOMEONE HAS OLDER ROUTINES WHICH DO NOT CALL CLRGI

C
1100 CONTINUE

TMG = ABS(NC)
1MG = 2**(IMG - 1)
PRINT *,' IMG = ',IMG

B(O) = IOR (LDC, IMG)
B(2) = IOR (LSM, 'OOOF'X)

* B(3) = ERS
STAT = SYS$QIOW (%VAL(GR LU),O$_WRITELBLK,

.'x. *[IOSB,,,B, %VAL(6),,,,)
RETURN

C
C ERASE GRAPHIC NO LONGER USED SUBROUTINE CLRGI USED

* C LEFT IN CASE SOMEON9 HAS OLDER ROUTINES WHICH DO NOT CALL CLRGI
C
1200 CONTINUE

GR = ABS(NC) / 2
GR = 2**(GR + 8)
B(l) = IOR (LDC, GR)

* B(2) = IOR (LSM, 'OFOO'X)

20

%%0

B(3) = ERS

STAT = SYS$QIOW (, %VAL(GRLU),IO$WRITELBLK,
* IOSB,,,B, %VAL(6),,,,)
RETURN

C
C ANY OTHER VALUE FOR lOP IS BAD

'p.' C
1300 CONTINUE

WRITE(6,*) ' ERROR MESSAGE TOP OUT OF RANGE'
RETURN

* END
C
C
C CIOPCK IS A SUBROUTINE TO PACK 16 BIT DATA BACK INTO BYTES
C

SUBROUTINE CIOPCK (B, BUFF, NUM)
* INTEGER*2 B(512),T2

BYTE TI(2), BUFF(512)
EQUIVALENCE (T2, TI)
DO I = 1, NUM

T2 = B(I)
IF (T2.GT.255) THEN

T2 = 1AND (T2, 255) + I
END IF
BUFF(l) = TI(1)

END DO
RETURN
END

40 C
C CIOGPK IS A SUBROUTINE TO PACK I BIT OF EACH BYTE OF AN ARRAY
C INTO ITS BIT POSITION IN ANOTHER ARRAY. THIS IS USED TO
C CONVERT THE RESULT OF A GRAPHIC READ BACK TO THE ELAS FORMAT.
C

SUBROUTINE CIOGPK (B, BUFF, NUM)
BYTE B(512), T1(2)
INTEGER*2 T2, BUFF(32), MASK(16)
EQUIVALENCE (T2,Tl)
DATA MASK/'8000'X,'4000'X,'2000'X,'1000'X,

S* '800'X, '400'X, '200'X, '100'X,
'80'X,'40'X,'20'X, 'IO'X,8,4,2,1/

C * '8000'X,'4000'X,'2000'X,'1000'X,
C * '800'X, '400'X, '200'X, '100'X/

LOC = I
LOCO I 1
DO I = 1, NUM, 16

T2 =0
DO J =1, 16

a IF (B(LOC).NE.0) T2 = IOR (T2, MASK(J))

LOC = LOC + 1
END DO

BUFF(LOCO) = T2
LOCO = LOCO + I

END DO
e RETURN

END

21

6P

CDIMHO150OO8OOOC)IMV0O55O1OOOO0ISTFO14DIS2O4§OICOOOC'ITO1OOO01OP

SUBROUTINE RDSTAT(XLOC,YLOC,ENTER,FUNCI ,FUNC2)
IMPLICIT INTEGER*2 (A - Z)
INTEGER*4 SYS$ASSIGN, SYS$QIOW, STAT
EXTERNAL 10$_-WRITELBLK,IO$_READLBLK

INTEGER*2 GR, IMG, MASK, COL, BUFF(512), B(600), IOSB(4),

Win, LSM, WGD, WAG, LWM, bUM,
ERS, ERL, SLU, EGW, LER, LEA,

* LDC, NOP, LPR, LPR1, LPR2, LPR3,
* SPD, LPA, LPD, RPD, BITlO, BITIL,
* BIT15

C
.,- ~C THE FOLLOWING PARAMETERS DEFINE THE GRINNEL OPCODES SYMBOLICLY.

C
PARAMETER

*(WID=IoO0ofX, LSM="1000'X, WGD='2000'X,

* WAC-'2400'X, LWM='2800'X, LUM='2C00'X,
* ERS='3000'X, ERL='3400'X, SLU='3800'X,
* EGW-'3C00'X, LER='4000'X, LEA='4800'X,
* LEB-'5000'X, LEC='5800'X, LLR='6000'X,
* LLA-'6800'X, LLB='7000'X, LLC='7800'X,

** LDC-'8000'X, NOP='9000'X, LPR='COOO'X,
* LPR1-'C200'X, LPR2='C400'X, LPR3='C600'X,

*SPD-'AOOO'X, LPA='BOOO'X, LPD='DOOO'X, RPD='EOOO'X,
C
C BIT MASKS
C

*BlTlC)='040C)'X, BITIIt&0800'X, BIT15='80OO'X)
C

STAT = SYS$ASSIGN ('GRAO:',GR LU,,)

BM1 = TOR (SPD, '0080'X)
B(2) = TOR (LPA, '0000'X)

B(3) = IOR (RPD, '0000'X)
STATr SYS$01IOW(,%VAL(CR_-LUJ),IO$_WRITELBLK,

* IOSB .. ,B,%VAL(6), ,,

FUNC = C

FUNC2 = 0)

B B(1) '00()('X
B(2) ='0)000'X

DO WHILE (ENTER .EQ. 0)
STAT = SYS$QIOW(,ZVAL(CRL) ,0$_READLBLK,
* IOSB,,, BVAT,(I6),,,

WRITE (5,10) B(1)
* 10c FORMAT(4X,Z4,/)

PRINT *,' ';B =',IOSB(1),' ',IOSB(2)
IF (WO1 .AND. BIT15) .EQ. 0)THEN

ENTER 0 C
ELSE

ENTER I

* END) IF

22

0%

END DO
XLOC = B(1)
YLOC - B(2)

IF ((XLOC .AND. BITIO) .EQ. 0) THEN
FUNCI - 0

ELSE
FUNCI = I

4' END IF
IF (C XLOC .AND. BIT1I) .EQ. 0) THEN

FUNC2 = 0
to ELSE

FUNC2 = I
END IF
XLOC = XLOC .AND. 1023

"-' YLOC - YLOC .AND. 1023
PRINT , Fl = ',FUNCI,' F2 = ',FUNC2,' ENT = ',ENTER

RETURN
END

4

.

q.

.23

.4

."

.4

I

"'. 23
I

* . - . A

C'IMHO15OOO8OOO0IMVOO55O1OOOOCISTFO1CIS2O4@lICOOOOITO1OOOCIOP
SUBROUTINE TRKINT (ENTER)

C POLLS TRACK BALL INTERFACE TO DETERMINE IF THE ENTER BUTTON
C HAS BEEN PUSHED. THIS REPLACES DISINT FOR THAT FUNCTION

-~ C

IMPLICIT INTEGER*2 (A - Z)

INTEGER*4 ENTER
EXTERNAL 10$_WRITELBLK,IO$_READLBLK
INTEGER*2 GR, 1MG, MASK, COL, BUFF(512), B(600), IOSB(4)

* XLOC, YLOC,
*WID, LSM, WGD, WAG, LWM, LUM,
*ERS, ERL, SLU, EGW, LER, LEA,
*LDC, NOP, LPR, LPRl, LPR2, LPR3,
*SPD, LPA, LPD, RPD, BITlO, BITlI,
* BIT15

C
C THE FOLLOWING PARAMETERS DEFINE THE GRINNEL OPCODES SYMBOLICLY.
C

P ARAMFT E R
*(W1D='OOOO'X, LSM='1000'X, WGD='2000'X,

WAC=2_ 0'X, LWN='2800'X, LUM='2C00'X,
*ERS='3000'X, ERL='3400'X, SLU='3800'X,

*EGW='3C00'X, LER='4000'X, LFA='4800'X,
*LEB='5000'X, LEC='5800'X, LLR='6000'X,
*LLA='6800'X, LLB=t 7000'X, LLC='7800'X,

*LDC='8000'X, NOP= '9000'X, 1LPR='COOO'X,
*LPR1='C20O'X, LPR2='C400'X, LPR3='C600'X,
*SPD='AOOO'X, LPA='BOOO'X, LPD='DOOO'X, RPD='EOOO'X,

C I T %A SKS

*BIO-'r)400'X, BITLI='0800'X, BIT15 '?OOO'X)

STAT =SYS$ASSIGN ('GRAO:',GRLU,,)
80I) = OR (SPD, '0080'X)
B(2) = TOR (LPA, '0000'X)

B(3) = TOR (LPR, '0i1'X)
B(4) = TOR (RPD, '000O'X)

STAT = SYS$OIOW(,%VAL(GR_-LU) ,Io$ WRITELBLY,
* IlOSB,,,1,%VAL(8),,,,)

ENTER 0

C DO WHILE ((ENTER .EQ. 0) .AND. (JUNK .LF. 500))
C

* STAT SYSSQI0W(,%/VAL(GRLU),1O$_READLBLK,
* E[OSB .. ,B,%VAL(IT 16),,,

WRITE (5,10) BM1
IJ FORMtAT (4X,Z4,/)

IF ((B(1) .kND. BIT15) .EQ. 0)THEN
* ENTER =0

24

ELSE
ENTER = 1

END IF
C
c END DO

C
PRINT *,'ENTER = ',ENTER

RETURN
END

-25

'.

rp.'

p

copyo-

'PIMHO150OO8OOO01MVOO55O1OOOOOISTFO1@IS2O4§ICOOOCDITO1OOO4IOP
SUBROUTINE ZOOM
IMPLICIT INTEGER*2 (A - Z)
INTEGER*4 SYS$ASSIGN,SYS$QIOW,STAT
EXTERNAL 10$_-READLBLK, 10$_ WRITELBLK
INTEGER*2 CR, 1MG, MASK, COL, BUFF(512), B(600), IOSB(4),

* XLOC, YLOC,

* WID, LSM, WGD, WAG, LWM, LUM,
* ERS, ERL, SLU, EGW, LER, LEA,
* LDC, NOP, LPR, LPRI, LPR2, LPR3,
* SPD, LPA, LPD, RPD, BITIO, BITIL,
* BIT15

C
C THE FOLLOWING PARAMETERS DEFINE THE GRINNEL OPCODES SYMBOLICLY.

J, PARAMETER
*(WID='oooO'X, LSM=' 1000'X, WGD='2000'X,
*WAG='2400'X, LWM='2800'X, LUM='2C00'X,
*ERS-' 3000'X, ERL='3400'X, SLU='3800'X,
*EGW='3C00'X, LER='4000'X, LEA='4800'X,

* LEB-'5000'X, LEC='5800'X, LLR='6000'X,
* LLA-'6800'X, LLB='7000'X, LLC='7800'X,

** LOG-' 8000'X, NOP='9000'X, LPR='COOO iX,
* LPRI='C200'X, LPR2='C400'X, LPR3='C600'X,
* SPD=-'AOOO'X, LPA='BOOO'X, LPD='DOOO'X, RPD='EOOO'X)

C
STAT =SYS$ASSIGN ('GRAO:',GRLU,,)

CU PRINT *,'TURN FUN A SWITCH OFF'

PRINT ,

PRINT *

PRINT ,'DEPRESS ENTER TO ZOOM :

PRINT*
PP I NT *,'ZOOM VALUEFS SEQUENCE, THRU MODULO (t, 2, 4, 8)
PRINT *

PRINT '

PRINT *'TURN FUN A ON THEN DEPRESS ENTER To QUIT'
* uu~RINT

PRINT*
PRINT *'MOVE TRACK THEN DEPRESS ENTER TO SCROLL'

0 PRINT *

PRINT '

x 0

ENE 0

FUNCI = 0
*FUNC2 0

C
CAll1, RD)STAT(X,Y,ENTER,FUNCI ,FUNc2)
FNC2[ID 0
CH{AN 0

* - 26

.4S

DO WHILE (FuNC1 EQ. 0)

ZMVAL - ZMVAL + ENTER
ZMVAL = MOD (ZMVAL, 4)
ZOOMV = ZMVAL
B(l) = IOR (SPD, '0100'X)
B(2) = IOR CLPR, 'OOOF'X)
B(3) = OR (SPD, '0008'X)
ZOOMV = TOR CZOOMV, '004C'X)
B(4) = TOR CLPR, ZOOMV)
B(5) = TOR (LPA, '0000'X)
B(6) = IOR (LPD, x)
B(7) = IOR CLPD, y)
INSTCT = 14

C
IF (FUNC2 .NE. FNC2HD) THEN

CHAN = CHAN + I
CHAN = MOD (CHAN, 3)
FCHAN = IOR (2**CHAN, 'OFOO'X)
FNC2H-D = FUNC2
B(8) = fOR (LDG, FCHAN)
INSTCT = INSTCT + 2

END IF
C
C STAT = SYS$QIOW(,%VAL(GR_-LU),IO$_-WRITELBLK,
C *IOSB,...B,%VAL(INSTCT),....

C

CALL RDSTAT(X,Y,ENTER,FUNCI,FUNC2)

END DO
C
C CENTER IMAGE ON SCREEN WITH ZOOM VALUE OF 1
C

X = 255
Y = 255
B(1) - OR (SPD, '0100'X)
B(2) =IOR CLPR, 'OOOF'X)
B(3) = IOR (SPD, '0008'X)
B(4) = IOR (LPR, '004C'X)
B(5) = IOR CLPA, '0000'X)
8(6) = IOR CLPD, x)
B(7) =IOR CLPD, Y)
INSTCT = 14

C
STAT =SYS$QIOW(,%VAL(GRLU) ,IO$_WRITELBLK,

* IOSB .. ,VAL(INSTCT),,..)
RETURN
END

27

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

la REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None
2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTIONiAVAILABILITY OF REPORT

DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release; distribution is
, 2b unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

NORDA Report 203 NORDA Report 203
6 NAME OF PERFORMING ORGANIZATION 7a. NAME OF MONITORING ORGANIZATION

Naval Ocean Research and Development Activity Naval Ocean Research and Development Activity

6c ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Ocean Science Directorate Ocean Science Diiectorate
NSTL, Mississippi 39529-5004 NSTL, Mississippi 39529-5004

8a NAME OF FUNDING/SPONSORING ORGANIZATION 8b. OFFICE SYMBOL 9 PPOCUREMENT INSTRUMENT IDENTIFICATION NUMBER

Naval Ocean Research and It applicable)
Development Activity I

8c ADDRESS (City. State. and ZIP Code) 10. SOURCE OF FUNDING NOS.

Ocean Science Directorate PROGRAM PROJECT TASK WORK UNIT

NSTL, Mississippi 39529-5004 ELEMENT NO. NO, NO. NO.

63704N R1987 300 23508B
11 TITLE (Includ& 'scurity Classification)

Impleinentation Issues for Level 0 Image Processor Software within an Application Package
12 RERSONAL AUTHOR(S)

* James E. Lennox
13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Yr.. Mo, Day) 15. PAGE COUNT

Final From ___ To . February 1988 30
16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse it necessary and identify by block number)

* FIELD GROUP SUB GR image processing, software, hardware, ELAS, ERL, PAL,
_Landsat, Thematic Mapper data, VAX 11/780, VAX 11/750

modules, callable subroutines, COMD, pixel
19 ABSTRACT /Continue on reverse it necessary and identify by block number)

Image processing is rapidly emerging as a field with many interesting areas for the computer scien-
tist. Packages are available that allow images to be manipulated in an interactive environment by applying
functions to the image. Functions are defined as transformations from the image memory domain to
the display domain, which may permanently alter image memory values. This paper describes minimum
hardware constraints and the scope of modifications necessary to implement different image processors
within the Earth Resources Laboratory Applications Software (ELAS) software environment. It also con-
trasts the impact on software engineering principles related to the implementation of low-level soft-
ware to support the imaging functions.

20 DISTRIBUTIONAVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIEDUNLIMITED SAME AS RPT U DTC USERS Unclassified
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER (Include Area Code) 22c OFFICE SYMBOL

James E. Lennox (601) 688-4633 Code 351

DD FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

.. * . - - *-%* * - *~ - ~
S.X~~%-:--~

